Sparsest factor analysis for clustering variables: a matrix decomposition approach
نویسندگان
چکیده
منابع مشابه
Relationship Matrix Nonnegative Decomposition for Clustering
Nonnegative matrix factorization NMF is a popular tool for analyzing the latent structure of nonnegative data. For a positive pairwise similarity matrix, symmetric NMF SNMF and weighted NMF WNMF can be used to cluster the data. However, both of them are not very efficient for the ill-structured pairwise similarity matrix. In this paper, a novel model, called relationship matrix nonnegative deco...
متن کاملSparsest Matrix based Random Projection for Classification
As a typical dimensionality reduction technique, random projection can be simply implemented with linear projection, while maintaining the pairwise distances of high-dimensional data with high probability. Considering this technique is mainly exploited for the task of classification, this paper is developed to study the construction of random matrix from the viewpoint of feature selection, rath...
متن کاملBetter Guarantees for Sparsest Cut Clustering
The field of approximation algorithms for clustering is a very active one and a large number of algorithms have been developed for clustering objectives such as k-median, min-sum, and sparsest cut clustering. For most of these objectives, the approximation guarantees do not match the known hardness results, and much effort is spent on obtaining tighter approximation guarantees [1, 4, 5, 8, 6, 9...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Data Analysis and Classification
سال: 2017
ISSN: 1862-5347,1862-5355
DOI: 10.1007/s11634-017-0284-z